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1 I n t r o d u c t i o n  

The motion of a single particle in a storage ring is well determined by the external guide fields 
(dipole and quadrupole magnets, RF system, etc.), by the initial conditions and the synchrotron 
radiation. The many particles in a high intensity beam represent a sizeable charge' and current 
which ~ct as a source of electromagnetic fields (self-fields). These fields are modified through the 
boundary conditions imposed by the beam surroundings (vacuum chambers, cavities, etc.) and 
act back on the beam. This can lead to a frequency shift (change of the betatron or synchrotron 
frequency), to an increase of a small disturbance of the beam, i.e. an instability or a change of the 
particle distribution, e.g. bunch lengthening. These phenomena are usually called collective effects 
since a collective or a coherent action of the many particles in the beam is involved. 

As an example we consider bunches in a storage ring going through a cavity. Each bunch induces 
electromagnetic fields in this cavity which oscillate and slowly decay away. The next bunch,or  the 
same bunch on the next turrgmight find some field left and will be influenced by it. Such a case is 
illustrated in Fig. 1. The phase of the field seen in the next turn can be such that a small initial 
synchrotron oscillation of the bunch is increased. In each turn the oscillation is amplifiedpresulting 
in an exponentially growing instability. 
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Figure 1: Field acting from one bunch to the next one 

In many cases the fields created by the beam are small compared to the guide fields and their 
effects can be treated as a perturbation. This is done in three steps: 

a) We calculate the stationary particle distribution which is given by the guide field, initial 
condition and synchrotron radiation. 

b) We consider small disturbances of the bunch from the stationary distribution (different modes 
of betatron and synchrotron oscillations). We calculate the fields due to such a disturbance taking 
into account the boundary condition imposed by the beam surroundings (impedance). 
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c) We calculate the effect of these fields and investigate if the initial disturbance is increased (in- 
stability) or decreased (damping) or if the frequency of the mode of oscillation is changed (frequency 
shift). 

For the case of small self-fields considered here the particle distribution in the bunch is given 
by external conditions (machine parameter, initial condition, synchrotron radiation) and is usually 
Gaussian for electron machines. As disturbances of the stationary distribution we consider some 
modes of oscillation which are orthogonal to each other such that the stability of each mode can be 
treated independently. 

For strong self-fields, however, the particle distribution is modified and the modes of oscillation 
are influenced such that they are no longer independent. A self-consistent solution has to be found in 
this case which is much more difficult. It is usually attempted only' for the case of bunch lengthening 
where the longitudinal particle distribution in the presence of an impedance is to be obtained. The 
beam position monitors and the transverse impedance can usually not "resolve" the transverse 
particle distribution. It is therefore of importance for beam instabilities only in exceptional cases. 

We distinguish between single and multi-traversal collective effects. For the first kind no memory 
of the induced field over one revolution or over the time distance between the passage of adjacent 
bunches is assumed. An example of a single-traversal effect is bunch lengthening. For multi-traversal 
effects the impedance has to have a memory such that one bunch can influence the next one or itself 
after one revolution. This is provided by cavity-like objects with a relatively large quality factor Q. 

Finally, we distinguish between longitudinal and transverse effects. In the first case a longitudinal 
impedance influences the synchrotron oscillation such that its amplitudes grows or decays or changes 
its frequency. The transverse impedance has a corresponding effect on the horizontal or vertical 
betatron oscillations. 

2 I m p e d a n c e  and  w a k e  p o t e n t i a l  of  a r e s o n a t o r  

2 .1  C a v i t y  r e s o n a n c e  

Rs 
h 0 0 

Figure 2: RLC circuit equivalent to a cavity resonance 

Impedances and wake potentials have been treated extensively in an earlier lecture. As an 
introduction to the interaction between the beam and a cavity resonance we recapitulate here 
briefly some of the essential properties. 
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Cavities are the most important  objects which can cause coupled-bunch mode instabilities since 
the induced fields oscillate for a relatively long time and provide a memory over one revolution. Such 
a cavity can be of a form which resembles an RCL circuit, Fig. 2, and can, in good approximation, 
be treated as such. The RCL circuit has a shunt impedance Re, an inductance L and a capacity C. 
In a real cavity these three parameters cannot easily be separated. For this reason one uses some 
other parameters which can easily be measured directly: The resonance frequency w~, the quality 
factor Q and the damping rate a: 

1 ~ Re _ R~Cw~ w~ 
w ~ - ~ £ - ~ ,  Q = R . _ _ - L w - - ~  , a = ~ - ~ .  (1) 

If this circuit is driven by a current I we have the voltages across each element 

1 f dlL VR = IRR,, Yc = --~ Icdt, VL -= L dt (2) 

and the relations between the voltages and currents 

Vn= Vo= VL= V , In+ Iv+ IL = I. (3) 

Differentiating with respect to t gives 

y 
]= ¢.+ [o+ iL= ~ + c ~  +- E. (41 

Using L = R,/(w~Q) and C = Q/(wrR.) we get the differential equation 

~ r  " {Mr R s  "- + -~v + ~ v  = ---~-~. (51 

The solution of the homogeneous equation represents a damped oscillation 

y ( t )  = fZe-°' cos ~o~ 1 - - ~  + ¢ (6) 

o r  

V ( t ) = e  -" t  Acos w, t + B s i n  ~a. t " . (7) 

2 . 2  W a k e  p o t e n t i a l  

A- C 
i(t)-q 8(0 

1 
I 02 r~  Lv~ 

! 
~ + ~ ?  + ~ v  = ---~- J~'R': 

Figure 3: Equivalent RLC circuit driven by a delta pulse 
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We now calculate the response of the RCL-circuit (representing a cavity) to a delta function 
pulse (very short hunch), Fig. 3, 

I(0  = q (t) (8) 
The charge q will charge up the capacity to a voltage 

q wrRs 
V(0 + ) = ~ =  Q q. (9) 

The energy stored in the capacitor is equal to the energy lost by the charge 

q2 ~ R ,  2 V(0+) 
U = -~ = ~ - q  - 2 q = kp"q2' (10) 

where we introduced the parasitic mode loss factor 

w~R~ 
kpm- 2Q" (11) 

The charged capacitor C wiU now discharge first through the resistor Ro and then also through the 
inductance L 

I ; ' ( 0 + ) = - C =  C = C  R, = -  Q2 q = Q q. (12) 

The resonance circuit has now the initial conditions 

2w, kp,, 
V(O +) = 2kp,~q and 1~'(0 +) . . . . . .  Q q .  (13) 

Taking the solution of the homogeneous differential equation and its derivative 

V ( t ) = e  -"t Acos t +Bsin  w, t (14) 

?(t) = e -°' 

and satifying the above initial conditions with 

A = 2kpmq and - Aa + Bwr 402 - -~ q (15) 

gives for the voltage in a resonator circuit excited at the time t = 0 by a &pulse I(t)  = q~t 

This voltage is induced by a charge q going through the cavity at the time t -- 0. A second point 
charge q~ going through the cavity will gain or lose the energy U = q'V(t). This energy gain/loss 
per unit source and unit probe charge is called the wake potential of a point charge or also the Green 
function G(t). For our resonator (cavity resonance) we have 

2Q /1- ] (17) 

which for a large quality factor Q >> 1 simplifies to 

G(t) ..~ 2kpme -"t cos (wrt). (18) 
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2.3  I m p e d a n c e  

We assume now a harmonic excitation of the circuit with a current I = .T cos(wt), Fig. 4. 

I!]'L 
- -  o 

! 

Figure 4: Equivalent RLC driven by a harmonic excitation 

The differential equation of the harmonic excitation is 

Wr • w~R', ]w sin(wt). (19) + ~ y  + ~ v  = 

The solution of the homogeneous equation is a damped oscillation which disappears after some time. 
We are left with the particular solution of the form V(t) = A cos(wt) + B sin(wt). Inserting this 
into the differential equation and separating cosine and sine terms gives 

WrW w'wR'.i. (20) ( ~  - J ) A  + ~ - B  = 0 and ( ~  - ~ ) B  - ~ --Q - A =  O 

The voltage induced by the harmonic excitation of the resonator becomes 

v ( o  iRoc°s@t)  - o ~==~- sin(~,t) = - . . . . .  (21)  

The voltage has a cosine term which is in phase with the exciting current. It can absorb energy 
and is called resistive term. The sine term of the voltage is out of phase with the exciting current 
and does not absorb energy, it is called reactive. The ratio between the voltage and curregt is the 
impedance. It is a function of frequency w and has a resistive part Zr(W) and a reactive part Zi(w) 

Z,(w) = R, Zi(w) = (:t=)n, (22) 
1 + q~ (~-z:-~z~ 2 ' 1 + 0 2 (~A:e-~ 2" 

2 . 4  C o m p l e x  n o t a t i o n  

We have used a harmonic excitation of the form 

I(t) =/cos (wt )  = I ej~'t + e-J~'t with 0 < w < oo. 
2 

It is often more convenient to use a complex notation 

It) = i d  ~'t with - oo < w < oo 

which leads to more compact expressions. Taking the differential equation 

Wr " wrRs "- ~+ g v + ~  ; --~--~ 

(23)  

(24)  

(25)  
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= ~lexp(jwt) and seeking a solution of the form V(t) = of the excited resonance with I(t) 
Vo exp(jwt), where V0 is in general complex, one gets 

. tO t - -  W 'cot tMrO')/~8 ^ "wf - w2Voe j°'t + :---~Voe: + w~Voe i°n = j - - - - ~ l e  J (26) 

and for the impedance which is defined as the ratio V/l ,  

Z ( w ) =  V° J%-~ = R o  1 - J ° ' ~  (27) 
"T = R" w ~ - w2 + j Q ~ 1+ Q 2 ( ~.e! ~ ' ~  2 " 

For a large quality factor the impedance is only large for w ~ wr or [w-wrl/wr = ]Aw]w~ <<: 1 and 
can be simplified 

1 ' a~, Z(w) ~ R,- -'72Q'~7 (28) 
1 + 4Q 2 (a-~] 2" 

k w r /  

The resonator impedance has some specific properties: 

w = w, ---* Z,(wr) has a maximum, Zi(wr) = 0 

I~l < ~ ,  - - '  z , ( ~ )  > ~, (inductive) (29) 

[w I > 0 ~ Zi(w) < 0 (capacitive) 

and some properties which apply to any impedance or wake potential 

Z,(~) = Z,( -~)  , Z,(~) = - Z , ( - ~ ) ,  

f_~ G(t)e-i~tdt, Z(w) = Fourier transform of G(t),Fig.5, (30) Z(w) 

t < 0 --* G(t) = 0 nofieldsbeforeparticlearrives. (31) 

Caution: sometimes one uses I(t) = ]e -'°'t instead of I(t) = ie/°'t, this reverses the sign Zi(w). 

k C(t)/p, k j .  G r e e n  f u n c t i o n  

A A 
o V  i k J i  v ~ i ~,t/z. 

Z(o)/R. i m p e d a n c e  

..... ' . . ___  
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Figure 5: Green function and impedance of a resonance 
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3 I n t e r a c t i o n  o f  a s t a t i o n a r y  b u n c h  w i t h  a n  i m p e d a n c e  

3.1 S p e c t r u m  o f  a s t a t i o n a r y  b u n c h  

~(t) 

T(,~) 

I 

I t i m e  d o m a i n  

o ~ 

frequency d o m a i n  

I 

0 co 

Figure 6: Single passage of a bunch in time and frequency domain 

We consider a single traversal at the time t = 0 of a bunch having the form I(t) which we 
assume for convenience to be symmetric in t. The spectrum of this single bunch traversal is given 
by the Fourier transform, Fig. 6, 

1 f j*  I(t)e-J°~tdt. (32) ~(~) = ~ 

Had this bunch passed by the observer at an earlier time T its current and spectrum would be 
of the form IT(t) = I(t - T) and 

1 
f'_'~ I(t - T)e-J°'tdt i~(~)_ ¢V7 o o  

e-J°T / i  ~ 
= ~ oo I(t - r ) e - J ~ ( ' - T ) d ( t  - T )  = e-S~Tl(~). 

A shift of the time domain function produces a phase factor in the Fourier transform (Fourier shift 
theorem). 
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Figure 7: Multiple passage of a bunch in time and frequency domain 

Next we take the case of a bunch circulating in a storage ring with revolution time To. It 
represents a current 

km¢o 

Ik(t) = ~_~ I ( t -  kTo). (33) 
k=-oo 

The spectrum is obtained using the shift theorem 

h(w) = ~ e-J'~kT°i(w). (34) 
k = - o o  

Using the relation 

we get 

~ ]  e-Jk= = 27r ~ ]  5(x-  2rp) and 5(ax)= 16x (35) 
a k=-oo p=--c¢ 

e -~k~. = 2~ ~ ~(~To - 2~p) = E ~" ~(~- ~o), 
k=-~ , : - ~  To ,_-~_~ 

where wo = 2re/To is the revolution frequency. The Fourier transformed current is 

h @ )  = ,~o ~ i@)5(w - ~Oo). 
p~--Oo 

An inverse Fourier transform gives the current in time domain, Fig. 7, 

/~ 020 oo oo 
1 ik(w)ej,Otdw = ~ ~_, [ 5(w_txoo)]@)d~,d ~ 

i~ ( t )  = ~ ~ v 2 ~  , = _ ~  J - ~  

I k ( t ) =  ~o ¢o . ",~, 
.~- E I ( ~ o ) e  . 

V ~7C p=-eo  

(36) 

(37) 

(38) 

(39) 
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Since we assumed I(t) to be symmetric we have i(pwo) is real and l(-/XVo) =/~(/XVo) so that com- 
bining positive and negative frequency terms gives 

2wo oo . 

Ik(t) = Io + - - ~  ~ ~(p~o) cos(~0t). (40) 
"V' ZTl" p = l  

We used here a Fourier transform in view of later applications. Since the bunch current Ik(t) is a 
periodic function it would have been easier to develop it into a Fourier series 

oo 2030 ~ 
Ik(t) = Io + ~ Ip cos(pwot) with Ip = ~ I ( p w o ) .  (41) 

1 

For low frequencies Ip ~ 2/0. 

3 . 2  Voltage induced by the  s ta t ionary  bunch  

In the presence of a cavity resonance or any general impedance Z(w) the circulating stationary 
bunch induces a voltage in frequency domain 

f4@) = i~@)Z@) = Wo ~ i(,o)6(w - ~ o ) Z @ )  (42) 
p------oo 

and in time domain 

020 oo OO 

v,(0 - ~ p E  f ~(~)~(~-p~o)Z(~) ¢~'~ 
030 oo 

= ~ E i(p~o)Z(~olcJ~' 

or, by combining positive and negative frequencies and observing the symmetry conditions Zr ( -w)  = 
Z,(w) , Zi(-w) = -Zi(w) and the fact that Z(0) = 0 

co 

Vk(t) = - ~  p=~ i(p~o) (z~(~o) cos(p~ot) - Z,(p~o) sin(p~ot)). (43) 

3 . 3  E n e r g y  loss per  tu rn  of a s ta t ionary  c i rculat ing bunch  

The energy lost by the circulating stationary bunch in one turn due to the impedance Z(w) is 

Wb = fo r° Ik(t)Vk(t)dt. (44) 

From Sections 3.1 and 3.2 
oo 

ik(t) = ~ ~ i(v~o)O .'~' (45) 

Vk(t) = ~ ~ ,  i(p'wo)Z(p'wo)e ip'~t (46) 
V £71" p ~ = - o o  

so that 
2 oo ~o )-ujo w~ = ~ ~ ~ i(r~o)i(p'~o)Z(p'~o ¢~(.+~')'dt. (47) 

The integral 
- -  [To ei~(p+p,)~ dt = -- [To (cos(wo(p + p')t) + j sin(wo(p + f)O) dt (48) 
.tO .tO 
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vanishes except for p+p '  = 0 in which case it takes the value To = 2p/wo. We have therefore p = - p '  

~ 2 O0  

: = I(~o) z,(~o) w~ ,oo I ( ~ o )  z(v,,,o) ~ o Z -  
p = - o o  1 

(49) 

where we used i ( w ) l ( - w )  = i(w)i*(w)) = Ii@)12, which is true for the Fourier transform of a real 
function I( t) ,  and the symmetry relations Zr(w) = Z r ( - w ) ,  Zi(w) = - Z i ( - w ) .  

This is the energy loss of the whole bunch. The average loss per particle U is 

U -  W~ _w0eU~ (50) 
N 2~I0 

where N is the number of particles and I0 the current of the bunch. 

4 I n t e r a c t i o n  o f  a n  o s c i l l a t i n g  b u n c h  w i t h  a c a v i t y  

4.1 R e v i e w  o f  t h e  l o n g i t u d i n a l  d y n a m i c s  

v(t) 

Uo/e 

bunch L 

Figure 8: Longitudinal beam dynamics 

A particle with a momentum deviation Ap has a different closed orbit which is displaced by 
A x  = a A p / p .  As a result the orbit length L, the revolution time To and the revolution frequency 
COo are changed: 

A L A p A w o A T o  ( 7j~)Ap Ap - E - =  ~ ' - - - = -  ~ . . . .  7 - -  (51) 
p ~0 To p p 

with ~/= a l / 7  2. There is a transition energy ET = m0c27T with 7T = 1/a2 for which the dependence 
of the revolution frequency on momentum (or energy) changes sign: 

1 
E > ET ..--* -~  < a ~ r I > 1 ~ wo decreases with AE (52) 

1 
E < E T .-~ -~  > a ~ r I < 1 ---* Wo increases with AE.  (53) 

Many machines work far above transition energy and 7/,~ a. We will assume that the particles are 
ultra relativistic in which case A p / p  ~ A E / E  = e. In the presence of an RF system, of synchrotron 
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radiation loss /Jr, and of the loss due to impedance U, a circulating particle has an energy gain 
6E per turn 

$E = e~Z sin(hwo(t, + r)  - U°(E) - U(t) (54) 

with to being the synchronous arrival t ime of the particle in the cavity and ~" the deviation from it, 
and Uo the energy loss per turn due to synchrotron radiation. Introducing the synchronous phase 
angle ¢o = hwoto and assuming the r << T0, Fig. 8, wc get 

dU, A E - dU (55) ° E  ~ ei 7 [sin(C,) + cos(¢°)hw0r] - U0 - - ~ -  --~-~'. 

The energy gain per turn is very small ~E << E and we can make a smooth approximation 

A E  9.~ 
= ~To = ~ -  (56) 

E w 0 

~ =  e~'sin¢,wo wo2hegcos¢, woUo wodU, 1 wodU 
27rE + 2 r E  7" 2~r E 2rr d---E e E 27r dt r. (57) 

To have equilibrium for the synchronous particle e = 07 r = 0 we have Uo = er~ sin ¢,. Using 
/" = ~ A T o  = r/c we get 

2 heV cos ¢~ wo dU, 1 wo dU 
= w° 2~--E ¢ 2 r d E C  E21r dt 

These two first-order differential equations can be combined into a second-order one 

dV.~o. ~h,~f~¢os¢, L~odU 
g +  -~-~-~c  2 r E  c - E27r dt e = 0 ( 5 8 )  

which is the equation of a damped oscillation. Using 

2 2 hrleV cos ¢, 
~°o = - ~ o  ' ~ Ol ° - -  

1 COo dU, (59) 
2 2rr dE ' 

seeking a solution of the form exp(jwt) and assuming a ,  << w,0 we get 

Wo rl dU ) 
- , .~  + j~,~° + (o& + ~ - ~ - j - f  = o (60) 

Calling 

gives 

w = Ja" -I- [ ( J ' °  + w° q dU ) lwo r/ dU 
2r E -~  a~" ~ j a ,  4- (W,o + 2 2~r w,oE ~ )" (61) 

Aw, = l wo rl dU 
2 27r wooE dt (62) 

c = A (e (-~'+j(~'°°+z~'~')t + Be(-'~'-J("'°+a')t). 

For the initial conditions e(t) = ~, ~(0) = - a j  we get A = B = i /2  and 

(63) 

~(t) = ~e - ° ' '  cos(@,0 + A~ , ) t ) .  (64) 

In order to get a stable oscillation we need 

E > Er -* cos ¢, < 0 , E < ET --* cos ¢, > 0. (65) 



~ ) 

4.2 Qual i ta t ive  t r e a t m e n t  of t h e  R o b i n s o n  i n s t a b i l i t y  

The most important effect of the interaction between a longitudinally oscillating bunch and a cavity 
is the so-called Robinson instability [1] which is treated here in some detail since it can be generalized 
to describe M1 multi-turn instabilities in storage rings. We start with a qualitative treatment of 
the Robinson instability by considering a single bunch circulating in a storage ring and exciting a 
cavity resonance with resonance frequency wr and impedance Z(w) of which we consider only the 
resistive part Zr. 

121 

h¢~ o 

/ 

I 
I 

i 
I 

I 

Figure 9: Qualitative treatment of the Robinson instability 

The revolution frequency w, of the circulating bunch depends on its energy deviation A E  

~w0 A E  ( A / )  
w0 - a - -~-orw0=PWoc 1 - a  . (66) 

While the bunch is executing a coherent dipole mode oscillation c(t) = ~cos(w,t) its revolution 
frequency is modulated. Above transition the revolution frequency w0 is small when the energy is 
high and Wo is large when the energy is small. If the cavity is tuned to a resonant frequency being 
slightly smaller than the RF frequency wr < pw0, Fig. 9 left, the bunch sees a higher impedance 
and loses more energy when it has an energy excess and it loses less energy when it has a lack 
of energy. This leads to a damping of the oscillation. If wr >/xo0 this is reversed, Fig. 9 right, 
and leads to an instability. Below transition energy the dependence of the revolution frequency is 
reversed~which changes the stability criterion. 

4.3 S e m i - q u a n t i t a t i v e  t r e a t m e n t  of  the  R o b i n s o n  i n s t a b i l i t y  

We consider a narrow band cavity with a circulating bunch as before. The bunch executes a 
synchrotron oscillation which is approximately described as r = ~ cos(wot). This will produce 
sidebands to the revolution frequency harmonics of the bunch. Taking now only the revolution 
harmonic h, i.e. the RF frequency~ we have 

Ik(t) = I~ cos(hw0t - h~0÷ cos@or)) 

Ih (cos( hwot ) + sin(hwot)hw0 sin( hw, t ) ) 

for ÷ << To, or 

(sin((hwo + wo)t) + sin((hwo - ~o)t))/ 
hwo ~ ] 

Ik(t) = h cos(hwoQ + T j (67) 
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We calculate the voltage induced by the bunch in the cavity and take only the resistive part of the 
impedance. Using 

z+ = z(htoo + t o , ) ,  z -  = z (h too  - t o , ) ,  z ° = z (h too )  

we get 

v~( t )  = 

+ 

+ 

+ 

h [ z ° cos(htoot) 

~-~ (Z + sin((hwo + to,)t) + Z~" sin((hwo - w , ) t ) )  ] 

I~ [ z ° co~(htoot) 
htoo÷ 

(Z+(sin(htoot) cos(to, t) + cos(htoot) sin(to, t)) 

Z~(sin(htoot) cos(to, t) - cos(htoot) sin(to, t)) ) ] .  

W e  u s e  

so that 

r = ÷ cos(to, t ) ,  4- = -to,~ sin(to, t). 

~( t )  = i~ [ z ? cos(htoot) 

+ -'~hto° (Z+(sin(htoot)r_cos(htoot)'i')to,/ 

htoo (Z~(sin(htoot)r + cos(hwot)f--" ) ] 
+ T ,,,,. " 

We calculate now the energy loss per turn 

Wb = Vk(t)Ik(t)dt = g -- - - - -  
- U  

htoo • 

2 

The average loss per particle is 

V = Wb etoo eI~Z ° 
~ = w ~ o -  2 

and with the relation 4" = r/e we get 

u o -  "lgZ° 
2 

e I ~, htoo ~.~ 
(~; - z ; )~  

- - -  and  --dg = eh,~tod~(Z~ + - ZT)  
dE 4IoEto, 

With 
1 too dU 

e = te -~°t cos(to, t + ¢) , as - 2 2a- d~ 

we get for the damping or growth rate of the Robinson instability 

2 2 + t o o h ~ I ~ ( Z ;  - z ; )  tost~(z~+ - z ; )  

a, = 16~rto, IoE 8loV cos(f,) 

where we used 
2 2 hr/el~" cos ¢, 

W.o=-to~ ~ • 

Since the bunch length is usually much shorter than the tLF wavelength we have lh ~ 21o 

to, lo(Z + - ZZ) 
~ ° ~  29 cos(~.) 

(68) 

(69) 

(70) 

(71) 

(72) 

(73) 

(74) 

(75) 

(76) 
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Figure 10: Semi-quantitative treatment of the Robinson instability 

The growth rate of the Robinson instability is given by the difference of the resistive impedance 
at the upper and lower synchrotron side band. Above transition energy we have cos ¢~ < 0 and 
as > 0, i.e. stability if Zf- > Z + as we found already from qualitative arguments, Fig. 10. We 
neglected here the effect of the reactive part of the impedance. It leads to a shift of the synchrotron 
frequency [6]. 

4 . 4  D i s c u s s i o n  a n d  g e n e r a l i z a t i o n  o f  t h e  R o b i n s o n  i n s t a b i l i t y  

We have derived the Robinson instability for the case of a single bunch and a single, narrow band 
and relatively weak resonance. We will here briefcly discuss the way this instability can be extended 
to cover more general cases. 

A more general impedance will cover not just a single revolution harmonic with the two syn- 
chrotron oscillation sidebands but many such frequency lines. In this case the voltage induced in the 
impedance by each such line contained in the spactrum of the bunch current has to be considered. 
The growth rate will no longer be given by the difference between the impedance at the upper and 
lower synchrotron side band but between the sums of the impedance times the spectral power taken 
at each upper and each lower synchrotron side band contained in the spectrum of the oscillating 
bunch. 

This can be extended to the case of many bunches [2, 3]. With M equidistant bunches in 
the machine we have M different modes of oscillation each having a different phase between the 
oscillations executed by adjacient bunches. The spectrum of each such coupled bunch mode has 
synchrotron side bands at distinct revolution harmonics. In calculating the stability of a certain 
coupled bunch mode we have to sum over these side bands. 

So far we considered only dipole oscillations where the bunch makes a rigid oscillation around 
the nominal phase without changing the form. There are higher modes of oscillation, called bunch 
shape oscillations, which can be classified as quadrupole (m = 2), sextupole (m = 3), octupole 
(m = 4), etc. modes. Each mode has a spectrum with side bands at mw, from the revolution 
harmonics. Again, to calculate the stability of these modes we have to sum over these side bands. 

We have so far assumed that the effect of the impedance is relatively weak such that the changes 
of the synchrotron frequency and the growth rate of the instability are small compared to the 
synchrotron frequency itself. For very narrow band cavities with high shunt impedance, e.g. super- 
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conducting cavities, this might no longer be true. In this case we have to evaluate the impedance 
not at the unperturbed side band %o but at the shiftet synchrotron frequency w,. Furthermore, 
if we are interested in the growth rate we have to consider the cavity impedance for a growing 
oscillation which is different as soon as the growth time of the oscillation becomes comparable to 
the filling time of the cavity. Taking all this into account one arrives at a 4th order equation for 
the shifted synchrotron frequency and the growth rate for which a more general stabili ty criterion 
can be derived, often called the second Robinson instability [1]. 

We have so far considered stability for the case of infinitesimally small oscillations and calculi/ted 
their growth or damping time. If the oscillation amplitude becomes large some non-linear effects 
should be considered. The modulation index of the phase oscillation will become large leading to 
side bands at twice the synchrotron frequency. They have to be included when forming the sum 
over the impedance contribution. This can lead to a situation where the beam is unstable for 
small oscillation amplitudes but becomes stable again at large amplitudes. Such cases represent 
themselves in practice as bunches oscillating with finite but more or less constant amplitudes [4, 5]. 

5 T r a n s v e r s e  S t a b i l i t y  o f  a C o a s t i n g  B e a m  a n d  L a n d a u  

D a m p i n g  

5.1 I n t r o d u c t i o n  

We investigate now the transverse stability of a coasting, i.e. an unbunched, beam which has no 
longitudinal t ime structure. Such beams can only exist over longer time for particles and conditions 
where the energy loss due to synchrotron radiation is negligible. The application of the following 
treatment is therefore somewhat limited but, on the other hand, it is relatively simple and tran- 
parent. We use the case of the transverse stability of such a coasting beam mainly to explain the 
concept of Landau damping which is much more complicated for bunched beams. We follow here 
basically the method used in earlier Accelerator Schools [6, 7]. 

5.2  Transverse oscillation m o d e s  o f  a coasting beam 

We consider now a coasting (unbunched) beam circulating w~thout energy loss or gain in a storage 
ring. We assume that  this beam has a central momentum p0 with a corresponding revolution 
frequency w0c. The particles themselves have a distribution in momentum with deviations Ap and 

Ap 
Aw0 = -w0cT/- -  (77) 

P 

from the central values with distribution function 

1 d N  
F p ( A p ) -  g d p '  (78) 

where ~/= a - 1/7 ~, a = momentum compaction and N is the number of particles in the beam. 
The beam executes at the same time a vertical betatron oscillation such that  the motion of each 

particle consists of a rotation 0 = Wot, and a vertical oscillation y = ~ cos(Qwot),  see Fig. 6. This 
beam as a whole can execute such a motion in a very large number of modes as long as we do not 
fix a phase relation between the betatron oscillation of the individual particles. We are, of course, 
interested in modes which are very simple, e.g. where all the particles go up and down together 
or with a simple phase relation. Such simple modes contain only relatively low frequencies and are 
more likely to interact with realistic impedances of the beam surroundings. We classify the modes 
as closed waves with a different number n of undulations around the circumference. They can be 
described as 

y. = ~ cos(n0 - ~t), or y. = ~e ~("°-~'). (79) 
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For n = 0 all particles move together. If the motion is frozen by fixing the time t, the mode number 
n gives the number of waves around the ring (n = 4 for Fig. 11). 

V 

Figure 11: Oscillation modes of a coasting beam 

The mode number n can take positive or negative values depending on a phase advance or 
a phase lag of the oscillation executed by a particle in front of a reference particle. These two 
classes of modes are often called fast or forward, and slow or backward, waves. We now wish to 
determine the frequency w which is seen by a stationary observer at a fixed location 0. We know 
that the vertical oscillation frequency is Qwo for an individual particle. Such a particle executes 
the azimuthal motion 0 = 0o + wot. This gives 

ei(nOo+nt°o t-tot) = enOo-iQwo t (s0) 

o r  

= (n + Q)~0 = ~ ,  (81) 

where n goes through positive and negative integers. It is convenient to divide these modes into 
fast waves 

w~1 = (n! + Q)wo, n I > - Q  (82) 

and slow waves 

~ .  = (~. - Q)w0, n. > Q. (83) 

The spread in momentum of the particles in the beam results in a spread in the betatron 
frequency w~ through two effects. The revolution frequency Wo depends on Ap 

Ap 1 
AWo = -Wor/-~--, r /=  a - 72. (84) 

Furthermore the betatron tune Q depends on the momentum through the chromaticity 

AQ = ~QAp = Q, Ap,  ~ = AQ/Q 
p p ~ p / p .  (85) 

This leads to a spread in betatron frequency observed at a stationary location 

a ~ 1  = ( Q ' -  ~ ( n / +  Q))~0 a p  , ~w~, = ( Q ' -  ~(n, - Q))w0 Ap. (86) 
p p 



126 

5.3  R e s p o n s e  o f  t h e  b e a m  t o  a t r a n s v e r s e  e x c i t a t i o n  

We consider now an experiment where a periodic transverse force is applied to the beam by an 
electromagnetic device of length La. This force results in an acceleration G averaged over one 
revolution 

c = ~ O~ -'~' = ~[~ + [& × ~7]]T L~ (87) 
m = mot  2~rR" 

The equation of motion for a particle with betatron wave number Q and revolution frequency w is 

d~_AV + ~ Q 2 y  = G e - " .  (88) 
dt 2 

We are seeking a solution where a string of particles appear to a stationary observer as 

y = ~e i("°-~'O. (89) 

Using this and the relation between absolute and partial differentiation we get 

dy Oy Oy . Oy OYw = i(nwo - w)y (90) 
d-7 = 0 - 7 + ~ 0 =  ~ / + ~  0 

and the equation of motion becomes 

[-(nw0 - w) ~ + w2o Ql~]ye '('°-~') = Oe -'°''. (91) 

We solve this for ~ and assume that 0 = 0 which means that the oscillation is observed close to the 
exciter 

= .,~Q~ - ( , ~ o  - ~)~ = (.,  - . , o ( -  + Q))(o~ - O~o(,~ - Q)) (92) 

9 - 1  (93) 
= (~.f - ~,)(~.  - ~)" 

This is the response of a single particle. It is only large if the exciting frequency w is either close 
to the frequency w~ of the fast, or to the frequency wz, of the slow, wave. We will approximate 
for these two cases and get for the single particle responses 

( G )  ,~ - 1  1 ( G )  1 1 (94) 
2 ~ o  ( ~ / :  ~ )  ' . ~ 2Q~,0 (~,~. - ~ )  

This approximation takes only the response to the mode n (being closest in frequency) while the 
contributions due to the other modes are ignored [8]. In this form the single particle response is 
the same as that for the case of a set of oscillators used earlier. Therefore, we can easily find the 
response for the centre of charge for the fast wave case by an integration over the single particle 
response weighted with the distribution f (w#l  ) which is normalized such that f f (w~ f )dw~l  -2~r 

O f ](oJp~).,.. O__O__[pv f f(oJa]) 
< Y >f= / f(w.l)Y(w.tld~./= 2 ~ o  J w~f _ w"~'.f = 2Owo [ j . , . f _wdw"I : t : i r f (w)]  • 

(95) 
This integral goes over a pole at w = wZ! where the denominator vanishes. Such an integral has 
two parts, a principle value "PV"  which is obtained by excluding the pole with a small gap and an 
imaginary residue the sign of which is ambiguous since we did not speczify the initial conditions. 
The physical meaning of the two parts can be made more clear by calculating the beam response 
in velocity < ~ > of the centre-of-mass motion 

Owe-"" i P V  [ f ( t ~ f )  do) ] (96) 
< ~ >.--  - i w  < y > =  2Q----~o [~-f(w) - J w#f - w ~f" 



127 

The corresponding expression for the slow wave is obtained by changing the sign and replacing 
w#! by w#,. In both cases the limits of the integration are such that only the side band in question 
is covered. This is the response of a coasting beam to a transverse harmonic excitation with a 
frequency w being close to the one of a betatron side band w#. In our approximation the integration 
has to cover just such a single side band and we neglect the influence of other side bands. This 
response has a real part which is - apart from a common factor - -  equal to ~rf(w). The fact that 
this part is real means that for this term the velocity is in phase with the exciting acceleration 
and can absorb energy. It can therefore lead to damping of the centre-of-mass oscillation. The 
second term with the principle value integral is imaginary which means that the velocity is out of 
phase compared to the acceleration and no energy is exchanged. For this reason the two terms 
are also called resistive and reactive response. The resistive term can lead to a damping called 
Landau damping. This effect rests essentially on the existance of the residue. Since this is not 
very transparent we will derive the beam response again using real notation only but specifying the 
initial conditions clearly. 

5 . 4  T i m e  e v o l u t i o n  o f  t h e  r e s p o n s e  u s i n g  r e a l  n o t a t i o n  

We saw that the resistive part of the beam response to a harmonic excitation is due to the residue of 
the integral. Since it is this term which leads to Landau damping we would like to better understand 
the underlying physics. For this purpose we now discuss the time evolution of the response using 
real notation [6]. This leads to derivations which are more lengthy but more transparent. The 
differential equation describing the excitation of the beam is, in analogy with Eq. (96), 

~ y  
dr--- ~ + w~y = Gsin(wt). 

This equation has a homogeneous solution 

(97) 

yh=Asin(w#t)+Bcos(w#t) (98) 

and a particular solution 

Yp = w~ _ w2 sin@t). 

The general solution is a combination of the two, 

(99) 

y = A sin(w#t) + B cos(w#t) + 
O 
- w2 sin@t).  (100) 

rio determine the integration constants A and B we have to specify the initial conditions. We take 
the case where the oscillators are at rest until the time t = 0 when the excitation starts, 

y ( 0 ) = # ( O ) = 0  -* A =  w# (w~ - w2) ; B = 0. (101) 

This gives for the general solution 

002) 
We differentiate with respect to t to get the velocity of the single oscillator response 

= - / (1o3) 
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and rewrite this equation by substituting w e with w~ = w + (w~ - w) in the first term and w e = 
(wp + w) - win the second term of the parenthesis, 

~1 = ~G[cos(wt)( 1-c°s((w~-w)t)(w~ - w) _ 1 - cos((w~__+ w ) t ) . ~ w / ~  + w ] 

+ sin(wt) ('sin((w~ - w)t) sin((w~ + w)t)~]  

k / j  
(104) 

The above equation gives the velocity response for a single oscillator with resonant frequency w~. 
For the first term in the square bracket velocity and acceleration are basically out of phase while 
for the second term they are in phase. This statement is not exact since both terms also contain 
an oscillatory term with frequency (w e - w) which has to be discussed further. Before we integrate 
to obtain the centre-of-mass response we discuss these two components of the single oscillator 
response Eq. (104). We concentrate on a region in the vicinity of the exciting positive frequency w, 
i.e. co s ~ w where the first term inside each of the two round brackets is dominant. A corresponding 
discussion for w~ ~ - w  could easily be carried out in addition. In Fig. 12 the envelope of the 
oscillation executed is shown as a function of the difference (wo - w) between the resonant and 
the exciting frequency for different times t after the start  of the excitation. As this t ime increases 
particles oscillating with opposite phase are close together in frequency leading to some cancellation 
in the integration to follow. For the resistive (in phase) term the oscillators with resonant frequency 
close to the exciting frequency gain large amplitudes. 
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Figure 12: Time evolution of the beam response to a harmonic excitation 

We calculate the centre-of-mass response by integrating the single.particle response Eq. (104) 
over the resonant frequency w e weighted with the distribution f(wa). Using again the symmetry 
property of the distribution f(wo) = f(-wa) we can show that  

/ ~ :  1 - cos((w~ -w)t)dw p = - f 2  1 - cos(w~ + wt) dwp (105) 
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and 
/~o sin((w 0 _ w) t ) .  / ~  sin(co 0 + cot) 

o o  

dcoa (106)  

which gives for the velocity response 

r,o + r < ~) >= 2r J- oo f(w,) 1 wil - w 2~ J-oo f(w#) sm((coZco. _-coco)t)d:'°#" 

(107) 
We start with the out of phase (reactive) part which has an oscillatory term of the form (cos((co 0 - 
co)t)). As the time tincreases this term will have opposite phase for smaller and smaller frequency 
differences in w 0. The integration over w 0 will therefore vanish and we can replace the denominator 
of the reactive term by unity (1 - cos((co~ - co)t) -+ 1 except for the oscillators with w 0 ~ co. This 
central part w 0 ~ w becomes more and more narrow as the time t increases and we can replace the 
integral over the reactive term by the principle value integral Eq. (05) 

}~m f d(coo)X_cos((coo_w)t)~/~=lim([-, +fro )=pv f d(coo)l_cos((coo_co)t)a,o.. 
coil -- w ~ o  kd-oo w O -- co 

(108) 
The resistive (in phase) term of Eq. (107) contains an oscillatory term under the integral of the 

form 
sin((co n - co)t) = t sin((oJ0 - w)t )  

~ 0  - ~ ( . , l  - co)t = t s inc ( (co i  - co)t).  (109)  

For coo i t co and large t the above expression oscillates with opposite phase for small changes in 
w 0. The integration over this frequency will vanish as long as the distribution f(coa) is sufficiently 
smooth. For coo ~ w and very large t the function sinc((w 0 -co)t)will be about unity and the above 
expression grows with increasing time t without limits. Furthermore the integral [9] 

f~o sin((w 0 _ co)t)dco 0 
oo (coil - co) = ~ (110)  

is independent of t. We can therefore replace Eq. (109) by the 6-function 

lim sin((w0 - ~)t) = ~r6(co ° _ co). (111) 
,-+oo ( c o 0 - c o )  

Collecting the results obtained for the reactive and resistive part of the beam response we get 

tlirn < 0 > =  ~ f ( w o )  .i.. ] (112) 

This is the same result as that already obtained more quickly using complex notation. However, in 
this subsection we learned basically three things: 

a) The result Eq. (96) is only correct if the excitation has lasted for a long time. How 
long this time has to be depends on the resolution with which the distribution f(coO) has 
to be considered. If this distribution does not change significantly over a frequency range 
of Acoiit is sufficient to excite for a time t ) )  1 l A w  O. 
b) The sign of the residue can be determined from the initial conditions. Usually one 
excites a set of oscillators being initially at rest. However, it is in principle possible to 
have a set of particles oscillating initially with a particular distribution in amplitude and 
phase such that the exciting acceleration takes energy out of the beam. Since in the 
complex notation the initial conditions were not specifiedtboth possibilities axe contained 
in the beam response equation. 
c) From Fig. 1 it is clear that a few oscillators, having resonant frequencies close to the 
exciting frequency w l ~ co, attain large amplitudes. The energy absorbed by the beam 
from the exciter goes, therefore, into large oscillation amplitudes obtained by a small 
fraction of the oscillators. 
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5 . 5  T r a n s v e r s e  i m p e d a n c e  

It is well known that a beam can excite longitudinal modes in a cavity which then react onto the 
beam. It is also possible that the beam excites so-called deflecting modes which give a transverse 
force to the beam. A simple case is illustrated in Fig. 13 where a bunch is going through a cavity 
with a displacement y from the axis. This can excite a mode having a longitudinal electric field 
which increases with distance from the cavity axis. A quarter of an oscillation later this mode has 
a transverse magnetic field which can deflect particlcs. The transverse impedance is defined as the 
integrated deflecting field per unit dipole moment of the exciting current 

ZT(W) = --i f~R[ff'(w) + [~c X B(w)]]7.ds (113) 

The right hand side is multiplied with i which indicates that the driving dipole moment Iy is out 
of phase with the deflecting field. The above expression is matched to a complex description of an 
oscillation with e -/~'~. If one uses the convention e/°f instead, i has to be replaced by - j .  This 
impedance might become more clear if we relate the fields to the vertical velocity # rather than to 
the position y. With y = :?e a'~'t we have # = jwy and 

~ ~ ~ ~(~)]]~d~ ZT(w)=--w 0 [ ( ) + [ f l e x  (114) 
I~(0,) 

A real transverse impedance means that the transverse deflecting fields are in phase with the trans- 
verse velocity and transfer energy to or from the transverse motion of the beam. 

. . ~ [  0 fi Oe-O 

. . . . . . . . . . . . . . . . . . . . . . . .  ~ -  ~-J _-._-. 2.:. ~_ ¢~. ~> ........ 

Figure 13: Transverse mode in a cavity during excitation and deflection 

5 .6  T r a n s v e r s e  b e a m  s t a b i l i t y  c r i t e r i o n  

We calculated the centre-of-charge (coherent) response of the beam to an external transverse exci- 
tation with acceleration G 

G = < e[E + [~c x ~11 > (115) 
rno')' 

which gives for the fast wave 

0e -~'  f I(°~ef) ~ .  

If the beam surroundings represent a transverse impedance Zr,  

zr(,,,) = - i  , /°~'[g( ' ' )  + [& × ~(,,,)]]Td~ 
xv(~o) 

(116) 

, (111) 
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the oscillating beam will induce fields in it which will act back on the beam. We assume now that 
the acceleration G is not external but due to the self-fields induced 

ieZT] < y > 
G = 7mo2r¢ R (118) 

Substituting this in the expression for the beam response we get for the fast and the slow wave 

iclZT f f(w~l) "~" and 1 = iclZT [ f (w~)  .i.. (119) 
1 = 4~rQmoc~'y J w~l - w "~'~I 4~rQm0c2") ' ] w~, - W ' ~ "  

This gives a condition for which the beam is just at the limit of stability [10, 11]. By replacing the 
external excitation with the self induced one we assume that an oscillation, once started, is just kept 
going by the self-forces. To make it more applicable we introduce some normalization to separate 
the term which depends on the different beam parameters from the one which is just given by the 
form of the distribution. We introduce the half width at half height S of the distribution f(w~) and 
normalize the two frequencies w and w z with it 

w~f w~s w 
~f = -if- ~, = --if-, ~ = ~ , f(~:) = Sf(w:~1) , f(~,) = Sf(w/j,) (120) 

and get 
iecIZT f(~l) d~: iecIZr £ f(~,) d~s 

1 = 4rEQ-------S f ~ and 1 = 47rEQS J ~ " (121) 

This expression allows us to find, for given beam parameters, for each value of the driving frequency 
w (or its normalized value ~), the maximum impedance ZT which still does not lead to an instability. 
In this expression the integral and the impedance are complex numbers. It is therefore convenient to 
visualize the stability criterion by mapping the impedance to the frequency w or ~1. As long as this 
frequency has no imaginary part there is no growing instability since we expressed the oscillation 
as e -i'~t. We write the above condition slightly differently 

ecI ZT 1 eCI ZT 1 
4rEQ~ -- VT + iUT = i f y(_~2d:, and 4rrEQ--------~ = VT + iUT = i r l..ffdd E . (122) 

Plotting the above equality for a real frequency ~l gives the stability diagram. We give in Fig. 
14 the example of a Gaussian distribution. The diagram 'consists of two curves; at the right, one 
for the slow wave with positive values of the impedance; at the left, one for the fast wave with 
negative values for the resistive impedance. These curves represent a situation which is at the 
limit of stability. A slightly larger impedance than the one corresponding to this limit will lead to 
an instability. For the slow wave this means that values for the complex impedance ZT giving a 
reduced impedance UT + iVT lying on the right of the stability diagram lead to instability while 
for corresponding values lying on the left we still have stability. For the fast wave only negative 
impedances lead to instabilities if the resulting reduced impedance UT + iVT lies on the left of the 
fast wave stability curve. To summarize the situation for both waves, we have stability as long as 
the reduced impedance UT + iVT is inside the stability diagram bounded by the fast and the slow 
wave stability limit curves. 
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U, reactt ive imp. 

Figure 14: Stability diagram 

5.7 Landau d a m p i n g  for b u n c h e d  b e a m s  and for l ong i tud ina l  
instabilities 

Without going into any details concerning the Landau damping for bunched beams and for longitu- 
dinal oscillations we should make a few remarks on the limitation of the treatment presented here. 
The Landau damping against transverse instabilities in an unbunched beam which has a betatron 
frequency spread due to the energy spread combined with sextupoles Eq. (86) is a special case. The 
betatron oscillation we excite will not influence the frequency spread in the beam. In other words, 
the frequency wt~ of a particle is given by parameters like Ap, r/and Q' which are not influenced 
by the excitation of betatron oscillations. This situation is different and more complicated in cases 
where the betatron frequency spread is determined by octupole fields which give a dependence of 
the betatron frequency on amplitude. This is always the case for a bunched beam but it can also 
be the dominant effect in unbunched beams. Exciting a betatron oscillation will, at the same time, 
influence the betatron frequency distribution. Going through this calculation one finds that the 
integrals, Eq. (95), determining the beam response and the stability diagram do not contain the 
distribution f(wa) but rather its derivative [10-12] The same situation is present for longitudinal 
stability for unbunched as well as for bunched beams [12-16] 

* * * 
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